

Benha University Faculty of Engineering at Shoubra Electrical Engineering Dept.

Postgraduate (Pre-master) Course

Generation of Electrical Power from Renewable Resources

Dr./ Mohamed Ahmed Ebrahim

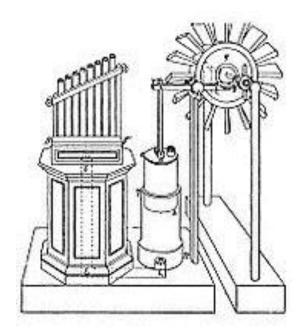
E-mail: mohamedahmed_en@yahoo.com

Web site: http://bu.edu.eg/staff/mohamedmohamed033

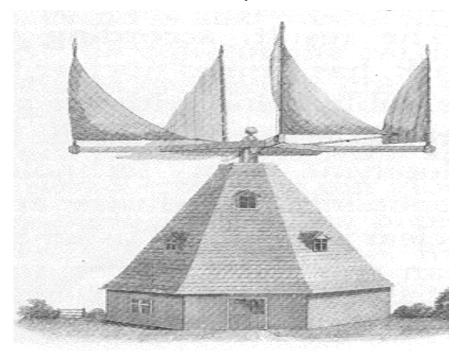
Syllabus

- INTRODUCTION.

 SOLAR PHOTOVOLTAIC POWER SYSTEM.
 - SOLAR THERMAL POWER SYSTEM.
 - WIND POWER SYSTEM.
 - ENERGY STORAGE SYSTEMS.
 - STAND-ALONE SYSTEM.
 - GRID-CONNECTED SYSTEM.

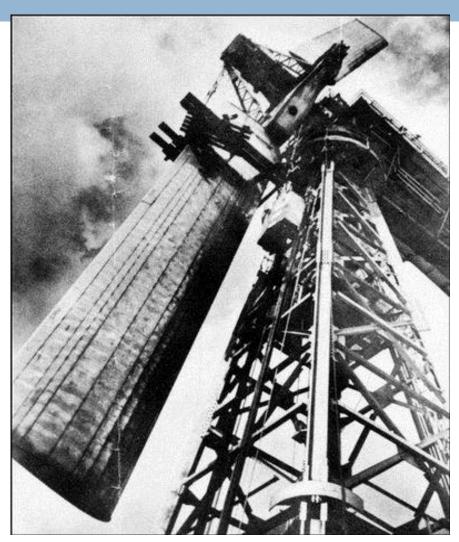

When was it used?

Historical overview


- □ Wind has been used by people for over 3000 years for grinding grain and pumping water
- Windmills were an important part of life for many communities beginning around 1200 BC.
- □ Wind was first used for electricity generation in the late 19th century.

Wind Energy History and Trends

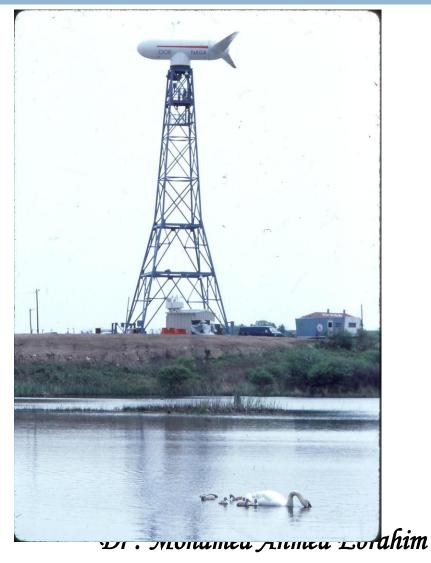
- □ The wind wheel of the Greek engineer Heron of Alexandria in the first century is the earliest known instance of using a wind-driven wheel to power a machine.
- Another early example of a wind-driven wheel was the prayer wheel, which has been used in Tibet and China since the fourth century.


Heron's wind wheel

Dr: Mohamed Ahmed Ebrahim

Grandpa's Knob

- Smith Putnam Machine
- 1941
- Rutland, Vermont
- □ 1.25 MW
- 53 meters (largest turbine for 40 years)
- Structural steel
- Lost blade in 1945

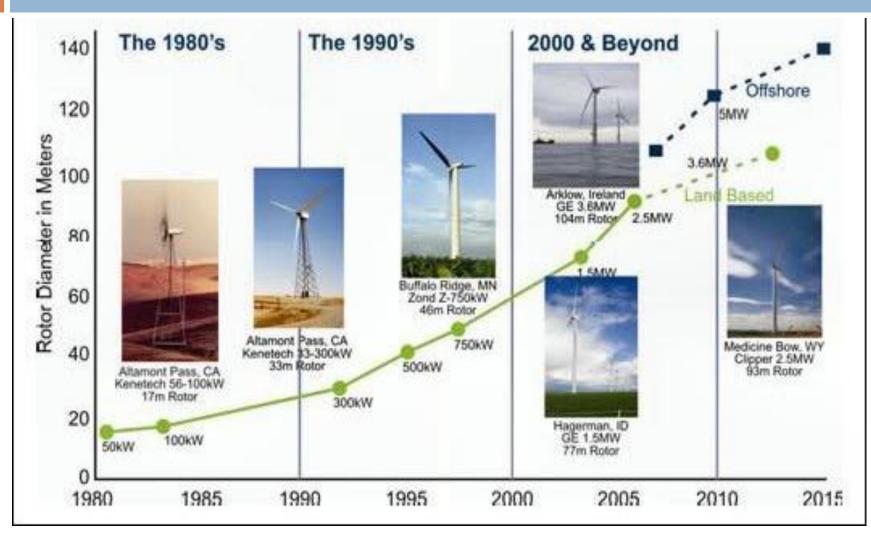

Dr: Mohamed Ahmed Ebrahim

Increased incentives

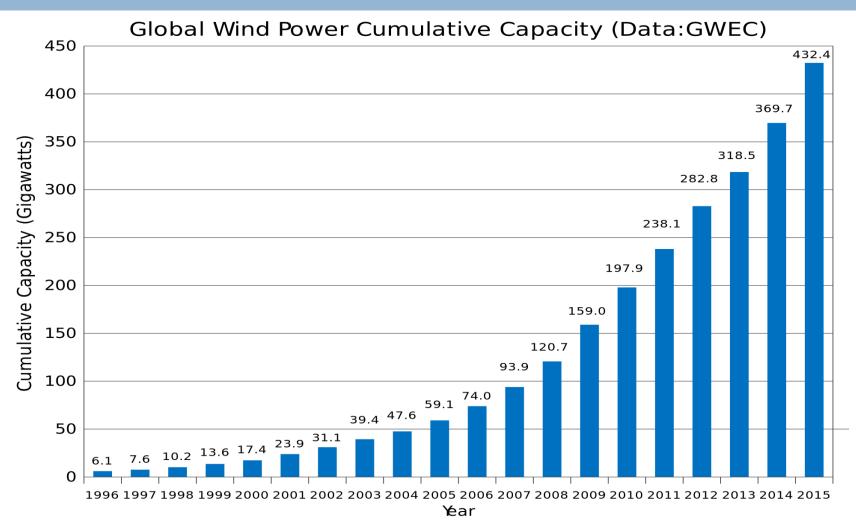
- Rise in oil prices in early 1970s prompted government research and incentives
- □ Key players:
 - Rocky Flats Small HAWTs < 100 kW</p>
 - NASA Lewis Large HAWTs > 100 kW
 - Sandia Labs VAWTs
- Result: the "Mod" series
 - Mod 0 Plum Brook, Ohio
 - Mod 1 Boone, North Carolina
 - Mod 2 Washington, Calif, & Wyoming

Mod 0 (200 kW)

Mod 1 (2 MW)


Mod 5b (3.2 MW)

November 16


Dr: Mohamed Ahmed Ebrahim

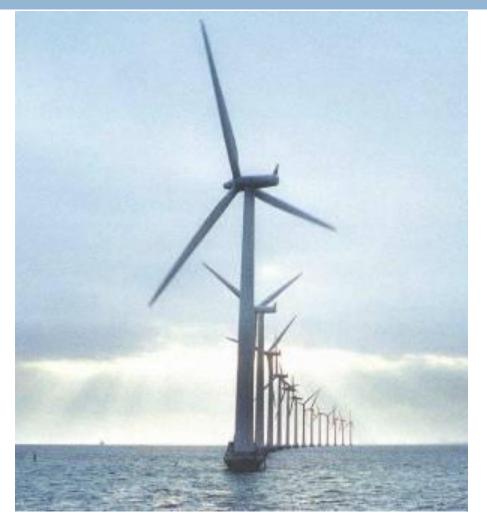
Evolution of Commercial Wind Technology

November 16

World Growth Market

Current Trends

- Move towards ever larger machines
- Offshore
- More financial players
- More countries
- Low wind speed turbines (U.S.)
- Green energy and green tags


Offshore Wind

■ Why offshore?

- Close to load centers (avoids transmission)
- On-shore NIMBY
- Better wind resource

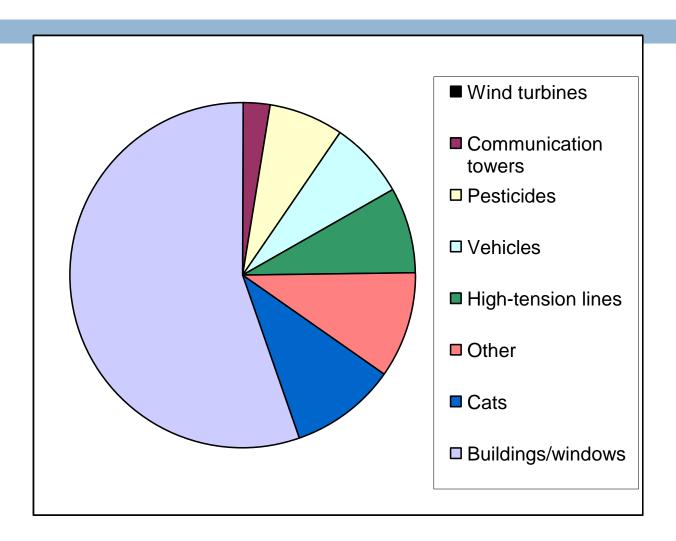
□ U.S. issues

- Less shallow water than Europe
- More extreme wave and hurricane design conditions
- Ice in great lakes

Dr: Mohamed Ahmed Ebrahim

Fact or Fiction?

Burning questions


What are your most burning questions about wind energy?

 Break into small groups and come up with two biggest questions per group.

Predicted Questions

- What's the real story with bird kills?
 - What about bats?
- What happens to my electricity when the wind doesn't blow?
- How noisy are wind turbines?
- Do wind turbines interfere with electrical power quality or TV and radio transmissions?

Human-related bird kills

http://www.awea.org/faq/wwt_environment.html#Bird%20and%20bat%20kills%20and%20other%20effects

Bat Kills

- Bat fatality at wind turbines has been documented worldwide in the U.S., Australia, Canada, Germany, Spain, and Sweden.
- Bat fatalities have been reported at nearly all wind energy facilities in the U.S.
 - annual mortality estimated at <2 to nearly 50 bats/turbine/year</p>
- Bat mortality appears to be highest in or near forests and lowest in open grassland or farmland away from forests.
- Bats rarely strike fixed objects.
- Source: Bat Conservation International
 (http://www.batcon.org/home/index.asp?idPage=55&ra5051 age=52)

When the wind doesn't blow...

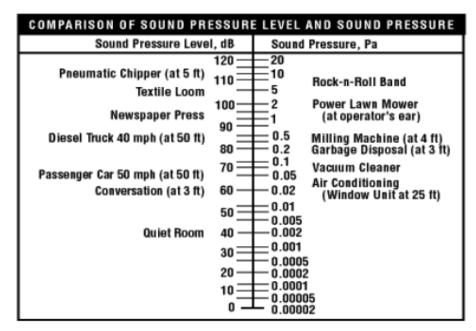
Do fossil-fired generating units have to be kept running on a standby basis in case the wind dies down?

- No. Wind speeds rise and fall gradually and the system operator has time to move other plants on and off line as needed.
- A 100-MW wind plant requires about 2 MW of conventional capacity to compensate for changes in wind.
- Wind can reliably provide 20% or more of our electricity.

http://www.awea.org/faq/wwt_environment.html#Bird%20and%20bat%20kills%20and%20other%20effects

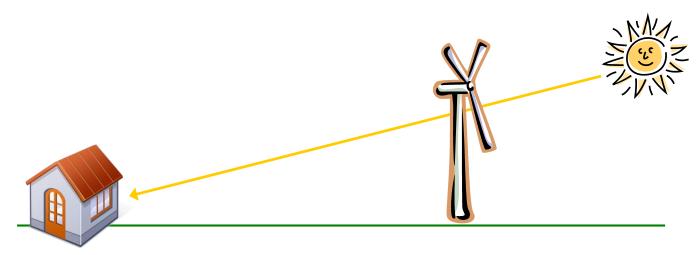
November 16

Lifetime environmental impact


- Manufacturing wind turbines and building wind plants does not create large emissions of carbon dioxide.
- When these operations are included, wind energy's CO₂ emissions are quite small:
 - about 1% of coal, or
 - about 2% of natural gas (per unit of electricity generated).

Noise

- Noise used to be a very serious problem for the wind energy industry.
 - annoying from as much as a mile away
- Aerodynamics and soundproofing have been improved significantly.
- Wind turbines operate when the wind is blowing, which tends to be louder than turbine noise.
- A modern operating wind farm at a distance of 750 to 1,000 feet is no noisier than a kitchen refrigerator or a moderately quiet room.



http://www.awea.org/pubs/factsheets/WE_Noise.pdf

Shadow flicker

- A wind turbine's moving blades can cast a moving shadow on a nearby residence, depending on the time of the year and time of day.
- Normally, it should not be a problem in the U.S., because at U.S. latitudes (except in Alaska) the sun's angle is not very low in the sky.

http://www.awea.org/faq/wwt_environment.html#Bird%20and%20bat%20kills%20and%20other%20effects

Electrical power quality

- Generally not a concern for low "penetration"
- Weak grids and grid reinforcement
 - Problems may occur if a turbine is connected to a weak electrical grid, which can be reinforced.
 - Power quality problems caused by wind farms are the exact mirror-image of connecting a large electricity user, (e.g. a factory with large electrical motors) to the grid.

Electrical flicker

- Flicker = short lived voltage variations in the electrical grid which may cause light bulbs to flicker.
- Flicker may occur if a wind turbine is connected to a weak grid.
- Flicker can be reduced with proper turbine design.

http://www.windpower.org/en/tour/grid/rein.htm *Dr: Mohamed Ahmed Ebrahim*

TV and radio reception

- Modern small (residential) wind turbines will not interfere with communication signals.
 - The materials used to make such machines are nonmetallic (composites, plastic, wood).
 - Small turbines are too small to create electromagnetic interference (EMI) by "chopping up" a signal.
- Large wind turbines can interfere with radio or TV signals if a turbine is in the "line of sight" between a receiver and the signal source. Alleviate the problem by:
 - improving the receiver's antenna
 - installing relays to transmit the signal around the wind farm

Sizes and Applications

Sizes and Applications

Small (≤10 kW)

- Homes
- Farms
- Remote Applications (e.g. water pumping,

telecom sites, icemaking)

Intermediate (10-250 kW)

- Village Power
- Hybrid Systems
- Distributed Power

Large (660 kW - 2+MW)

- Central Station Wind Farms
- Distributed Power

• Community Wind *Dr: Mohamed Ahmed Ebrahim*

November 16

Large and Small Wind Turbines

Large Turbines (600-2000 kW)

- Installed in "Windfarm" arrays totaling 1 100 MW
- \$1,300/kW
- Designed for low cost of energy (COE)
- Requires 6 m/s (13 mph) average wind speed
- Value of Energy: \$0.02 \$0.06 per kWh

Small Turbines (0.3-100 kW)

- Installed in "rural residential" on-grid and off-grid applications
- \$2,500-\$8,000/kW
- Designed for reliability / low maintenance
- Requires 4 m/s (9 mph) average wind speed
- Value of energy: \$0.06 \$0.26 per kWh

Small Wind Turbines

- Blades: Fiber-reinforced plastics, fixed pitch, either twisted/tapered, or straight (pultruded)
- Generator: Direct-drive permanent magnet alternator, no brushes, 3-phase AC, variable-speed operation
- Designed for:
 - Simplicity, reliability
 - Few moving parts
 - Little regular maintenance required

On-Grid Home with Wind System

- Tehachapi, CA
- Bergey Excel wind turbine,23 ft rotor, 10 kW
- Total installed cost was\$34,122 in October 1999
- California Buy-Down Program,\$16,871 cash rebate
- Estimated payback: 8 years

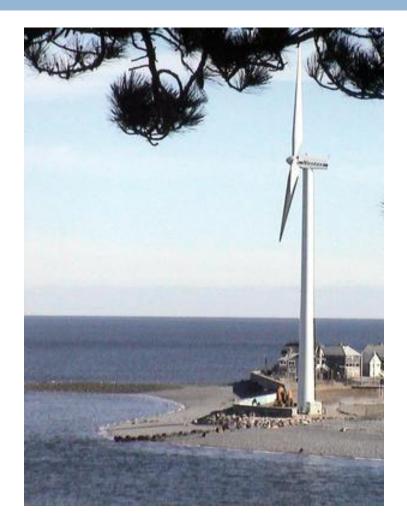
On-Grid Farm with Wind System

- □Southwestern Kansas
- □Bergey Windpower Excel wind turbine: 10 kW, 23 ft rotor, 100 ft tower
- □~21,000 kWh/year generation, utility bill savings ~\$2,800/year
- □Installed in early 1980s, ~\$20,000, received federal tax credit
- ■Maintenance costs \$50/year

Dr: Mohamed Ahmed Ebrahim

Orland, Maine

- Turbine Size: 50 kW
- Turbine Manufacturer:
 Atlantic Orient Corp. (AOC)
- Radius: 7.5 m
- Developer/owner: G.M.
 Allen & Sons Blueberry
 Processing Plant


Selawik, Alaska

- 4 x 50 kW Wind Turbines
- Turbine
 Manufacturer: AOC
- Developer/Owner: Alaska Village Electric Corp.
- Capacity: 200 kW

Hull, Massachusetts

- □ Turbine Size: 660 kW
- Turbine Manufacturer:Vestas
- Developer/Owner: HullMunicipal Lighting Plant
- □ Capacity: 0.66 MW

Ponnequin, Colorado

- Turbine Manufacturer:
 Vestas, NEG Micon
- Developer/owner:DisGen/Xcel Energy

Turbine Size: 660-750 kW

Capacity: 31.5 MW

Commissioned: 1999

November 16